		2
(b)	allow 1 mark for correct formulae sensible scales, using at least half the grid for the points	1
	all points correct ± ½ small square allow 1 mark if 8 or 9 of the points are correct	2
	best fit line	1
(c)	steeper line to left of original	1
	line finishes at same overall volume of gas collected	1
(d)	acid particles used up allow marble / reactant used up	1
	so concentration decreases allow surface area of marble decreases	1

 $\textbf{M1.(a)} \quad \ \mathsf{CaCO}_3 + 2\mathsf{HCI} \quad \rightarrow \mathsf{CaCI}_2 + \mathsf{H}_2\mathsf{O} + \mathsf{CO}_2$

	so less frequ	uent collisions / fewer collisions per second		
		do not accept fewer collisions unqualified		
	so rate decr	eases / reaction slows down	1	
(e)	mass lost of	2.2 (g)	1	
	time taken of			
	270 s	allow values in range 265 270		
		allow values in range 265 – 270	1	
	<u>2.2</u> = 0.008 270	14814 allow ecf for values given for mass and time	1	
	0.00815 (g /	′ s)		
	or			
	8.15×10^{-3}			
		allow 1 mark for correct calculation of value to 3 sig figs accept 0.00815 or 8.15 \times 10 ⁻³ with no working shown for 4 marks		
			1	
(f)	correct tang	ent	1	

0.007

allow values in range of 0.0065 – 0.0075

1

1

 7×10^{-3}

accept 7×10^{-3} with no working shown for **4** marks

[20]

M2.(a) (s) (aq) (aq) (g) must be in this order 2 marks if all four correct 1 mark if 2 or 3 correct

2

1

1

2

1

(b) (i) 55

ignore units

(ii) 54

allow ecf from (b)(i)

(iii) 0.92

correct answer with or without working gains **2** marks ecf from volume in **(b)(i)** accept 2 d.p. up to calculator value if answer incorrect, allow rate = (b)(i) / 60 for **1** mark

(c) (i) circle round point at (48,22)

(ii) problem (1) and explanation (1)
 explanation must give lower volume of gas or slower reaction
 ignore human error unless qualified

problem with bung

e.g. bung not placed in firmly / quickly enough

so gas lost

or

problem with reagent

e.g. acid was diluted or acid not replaced

so reaction slower

or

problem with temperature

e.g. temperature was lower than recorded temperature

so reaction slower

or

problem with measurement

e.g. length of magnesium less than 8 cm or timed for less than a minute

2

1

1

1

1

so less gas produced

(d) repeat the experiment (several times)

because anomalous results could be excluded

and then the mean can be determined / calculated

accept suggestion of alteration to method, which is explained as to why it would reduce the error, for **3** marks (e.g. place the magnesium in a container within the flask (1) so it can be tipped into the acid once the bung is in place (1). This will prevent anomalous results or gas loss (1))

ignore idea of more accurate gas syringe ignore shorter time intervals

(e) (i) use clean magnesium **or** use magnesium without oxide coating

1

1

1

1

1

1

(b)	it loses / transfers electrons
	it = Au / gold atom

three electro	ons	
	sharing / covalency = max 1 i	mark

(c) (i) O₂

2 CO and 2 CO₂ or correct balancing of equation from O *accept correct multiples / fractions throughout*

(ii) reference to incorrect bonding = **1** mark max

because carbon dioxide is simple molecular / small molecules

there are <u>intermolecular</u> forces (between the molecules) allow <u>intermolecular</u> bonds

so a small amount of energy needed (to separate molecules) **or** (*intermolecular forces*) are weak

1

- (d) any **three** from:
 - gold is the only catalyst for some reactions
 - catalysts are not used up
 - improves speed of reaction

reduces amount of energy or process needs low(er) temperature

if no mark awarded, allow catalyst reduce costs (of the process) for **1** *mark*

• only small quantities (of catalyst) needed

M4. (a) same number of (gaseous) molecules / moles / volume on both sides of the equation

allow particles for molecules do **not** accept atoms ignore amount

(b) (forward) reaction is exothermic accept reverse answer

1

3

1

(c) any **three** from:

- particles gain energy
- particles move faster
 allow particles collide faster / quicker
 ignore move more / vibrate more
- particles collide more **or** more collisions
- more of the collisions are successful or more of the particles have the activation energy or particles collide with more force / energy

(d) any **two** from:

- more product (obtained in shorter time) accept better yield (of product)
- less fuel needed
 accept less energy / heat / electricity needed

or

lower fuel costs ignore cheaper unqualified

• less pollution caused by burning fuels

or

less specified type of pollution caused by producing heat / burning fuels

allow correct specified pollutants caused by burning fossil fuels eg CO₂ / greenhouse gases **or** correct effect of burning fossil fuels eg global warming accept thermal / heat pollution

using less fuel conserves resources
 accept sustainable
 accept fossil fuels are non-renewable

[7]